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Oscillations of a
Water Balloon

Background

= To model the waves which
form on the surface of a
water balloon impinging on a
surface
m Look at acoustic (pressure)
waves created within the
water balloon
m Look at waves formed
from deformation of the
balloon surface

Figure : Waves formed on a water
balloon surface
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Oscillations of a
Water Balloon

Background

Figure : A travelling Gaussian isobar
impinging from below a membrane

Previous approach looked at
an acoustic driving force
driving oscillations on a
membrane

This is mathematically
complicated: two coupled
PDEs (the acoustic pressure
wave, and the wave equation
on the surface)

Better approach: try
modelling the surface force as
the surface tension of a
non-wetting droplet

This is governed by the
Young-Laplace Equation
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Brief Review

Oscillations of a
Water Balloon

Sven Isaacso Fluid mechanics: describe the velocity of \elements™ of the uid, ¢

Background

If irrotational ow: V x t = 0, therefore tt = V
|
is called the velocity potential and it satis es Laplace’s Equation
VZ =0

Goal: Solve the Laplace equation for the a droplet.

m Velocity potential of uid at surface of balloon will give velocity
of balloon surface

m Need a boundary condition to solve the Laplace Equation
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Young-Laplace Equation

Oxcilationsiofia The Young-Laplace Equation describes the pressure di erence at the

Water Balloon

S s surface between two uid media:

p:

‘Young-Laplace
Egn

m P =p;— pe Where p; is
pressure in medium 1 and p,
is pressure in medium 2

m is the surface tension (units
J/m? or N/m)



A Slightly Deformed Sphere

Oscillations of a
Water Balloon

Need to calculate the curvature of a sphere that is slightly deformed

Deriving a Consider radius of slightly
Boundary

Condition deformed sphere to be

r(; )=R+ ()

m R is the original radius
= is a small deviation from R Figure : Near-sphere, with slight
changes in radius
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Oscillations of a
Water Balloon

S Can be calculated by equating the in nitesimal change in the surface
area 77 ) )

A= —+ = dA
Ri Ry

Deriving a

Bouncary { small change in radius.
Alternatively, calculating the surface area of the deformed sphere:
Y4 P
A= R+ ) 1+V?r dA

which for small change  becomes

77 ,

— dA
R R2 R2 gn2 @2 sin @

equating the integrands we get...
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Surface Pressure and Fluid Pressure

Oscillations of a

Water Balloon Young-Laplace Equation becomes

2
P = Pt —Pair = = — =5 — 55

Deriving a
Boundary

Condition m Pgr IS constant, ambient

m P = — %
At the surface @ =@t = @ =@r. Di erentiate the above w.r.t. time
and substitute:

The boundary condition

e 0 .0 1
@2 R2 “@r @r sin
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Contact Pressure

Oscillations of a
Water Balloon

The pressure on the surface isn’t

Deriing Pair at every point of the sphere.

Bouiay At the bottom there is a Dirac
delta pressure

Pi= (r=R; = ; =0) in nitely
all area
this changes the boundary

condition equation (adds an extra
term)

Figure : A sphere droplet resting on
a plane
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Solution of Laplace’s Equation

Oscillations of a
Water Balloon

Look for a solution

=exp(-itof(r; ;)

SO

Computing the
solutions and

eigenfrequencies Vz =0
VA (exp(—ittf(r; ; )=
exp(—i 1)V (r; ; )=
VA(r; ; )=0

so f must solve Laplace’s Equation.
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Spherical Harmonics

Oscillations of a
Water Balloon

Computing the
solutions and
eigenfrequencies




Plugging in our solution

Oscillations of a e
Water Balloon The boundary Cond|t|on

2 1 1 @2
@___ @_+@ _@ sin @— + — @— =0
@2 R2 “@r @r sin @ @ sin @ 2
genfreg = exp(—i'Or'Yim( ;)
reduces to
o 10-00+2)
=1 R3
or, when the expansion of the contact force is included
2 = (-1 +2)

R+ @A D)
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Summary

Oscillations of a
Water Balloon

m Surface e ects should be treated as surface tensions, to avoid
two coupled PDEs

m Young-Laplace equation governs pressure di erences caused by
surface tension

m The Y-L equation can be used to get a boundary condition of
the Laplace equation for uid velocity potential

Closing Remarks
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Conclusions

Oscillations of a
Water Balloon

There are some problems with this model
m Applied pressure is not just at a point, but grows with time

m Di cult to determine \surface tension™ of a balloon { wouldn’t
expect this to be equal to the elastic tension

m This is theory is for small droplets for which gravity is negligible
to capillary action
However, this my best attempt yet
m Neatly ties together the surface term and the internal velocity
eld
m Reduces to the easily solved Laplace equation, for the velocity
potential

Closing Remarks
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Future Work

Oscillations of a
Water Balloon

m Account for gravity waves in the water balloon

m Treat contact force as an expanding area as a function of time,
rather than point

m Compare measured values to predicted

Closing Remarks
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