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I. The Prime Number Theorem

1. Introduction
Due to their random behavior and their great importance in number theory and abstract

algebra, prime numbers have been an interesting topic for mathematicians to study since the
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Buclid’s “Elements”. Then, in 1737, Buler proved the divergence of the harmonic series of
primes. Towards the end of 18" century, two mathematicians, Gauss and Legendre, working

independently, came to the same conjecture about the distribution of primes. Both conjectured
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Below is a table taken from Edwards of some values of 7¢x) and its approximations:

x (x) t x/inarcr | Lifx) |
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2. Introduction of the Riemann Zeta function

a. The Zeta function:
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and # ranges over all positive integers, Riemann considered s as a complex variable and studied
the function on the new complex plane.
Using the factorial function and contour integration, Riemann derived a formula for

2 171” that “remains valid for all 52
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This contour integral implies the path of integration; it starts at +co, goes to the left along the
positive x-axis, circles around the origin in the counterclockwise direction, and moves back to
+e0in the positive x-axis.

Based on the formula (1) of Z(s), for Re(s) > 1, £(s) is equal to Dirichlet’s funetion’
1

I 1

AN 2)




b. Characters of the Zeta function:

In his paper, after defining the zeta function, Riemann analyzed its properties. In this

section, a few important properties and sketches of their proofs are shown.

L

§=1.
Proof:

Because €' grows much faster than x* when x - oo, the integral in (1) converges for all
values of 5. And since convergence is uniform on compact domains, the integral defines a

complex analytic function. Hence, the overall function, £(s), is defined and analytic on the

entire complex plane except the possible points where s = 1, 2, 3, ..., where Il(~s)has poles.5

Afs=2,3, 4, the formula (2) shows that £(s) has no pole. In facts, at these points, the

fanction &(s)= Y n~° converges. And ats = 1, since we already know that the harmonic
1r=] g . y

series Em ln"s diverges, {(s) has a simple pole at s = 1.
He
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Proof:
By making use of the basic properties of the factorial function, the formula (4) can be
rewritten as
I-s

H(g"l)”wé(SFH(T“i)”_ﬁ_%m—s} )

Since the value of the function on the left-hand side remains unchanged when s is

.,_-(g‘,,,,u,, i'_?,kud:-‘. Y _ﬁ_--;.:?.i
i

Q.E.D.

In his paper, Riemann also showed another p}'oof of the functional egu;a,tlion. ‘He borrowed
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Property 3: The zeros of £(s) have their real parts between 0 and 1.8

Proof:

. —

at s =1, the roots of £(s) are the same as the roots of {(s). Then as it is proved in Properties 2
that £(s) is zero-free on the half-plane where Re(s) >1, &(s)} has no root on that half-plane
either.

Moreover, the equation £(s)=E£(1~s) implies that (I — p) is a root of &(s) if and only if
p is aroot of £(s). Hence, since it is shown that £(s) has no root on the half plane Re(s) >1,
E(s) does not have any root on the half-plane Re(s) < 0. Therefore, all the roots of £(s), if

existing, have to lie in the Stri}ﬁ 0 < Re(s) <1, - Q.E.D.

3. Complex Analysis Proof by Hadamard and Valle-Poussin:

In 1896, the Prime Number Theorem was proved for the first time by two




Lets= ¢ + if and consider s > 1, Then

In|&(s)] = Re(ln L(s})= E;cnn"" cos(tInft),

1

ifn = p™, pisprime
where ¢, = § ;5 P pisp .
0 otherwise

It follows that
111\2;’(0)3 E(o+it) (o + i2t)| = Em L1 (3 4cos(tInn) + cos(2tInn)).
Because 3 +4 cost+ cos 2t =2 + 4 cos t+ 2(cos t)2 =2(1 +cos )’ = 0,

1n|z;(a)3§(a+ it (o + iZf)l = 0.
Then E(oY E(o+it) E(o +i2t) = 1.

Lo +in)t

Thus, (o =DE(6))
o -1

E(o+i2e)|= ?7171 (8)

for o > 1 and for all values of 1.

S;ince Z(s) has a simple pole at s = 1, we have

limg_, (o~ 1)T{(s) = 1.
Suppose ¢ # 0 and assume S(1+if) = 0.
Then we would have |
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In addition, lilri % = oo, Hence, (8) implies Iirq !tf.,’ (a+2if)[ == ¢0, And because {(s) has
T3l (F e og—

~ only one simple pole at s = 1, it indicates that ¢ has to be 0, which contradicts to the assumption
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b. Second step of the proof of the Prime Number Theorem:
*  1: Show that W(x)~ x."?
Since no one had been able to prove the theorem directly from rréx) till his time, o
Hadamard decided to approach the theorem indirectly. He used another function that behaves

similar to 77(x) but is easier to estimate in his proof. He introduced the step function W(x}, which

starts at 0 and has a jump of In p at each prime power p"."" So the formula of W(x)is

W(x)= Ep“q Inp ©
| . - L pavio| T'(8) | x'ds ‘ : o "
By evaluating the definite integral - f ===, Hadamard obtained a representation
‘ 2oaid e E(s) ) s
for W{x):
’p x—2n ' 0
W(x) = xmz%+z - _%%32 (10)

where x > 1 and p ranges over the zeros of the Riemann zeta function.
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s 2: Deduce the P{jmewNumber Theoremi2

3
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used by Chebyshev in 1850.

We need to define a new prime-counting function 8(x). 8(x) represents the sum of the
logarithms of all the primes p less than x.'* Then 8(x) and W(x)are connected through the

formula



is at most

(1+£)yﬂ (1—‘9)36+

= 28i+(1+g){fy£} = 262 (L4 ) [Li(y)— Li(x)]
Inx *Int Inx

and at least equal to ~2¢ li +(1— ) Li(y)— Li(x)].
nx

Therefore, for a fixed x, E_(y) is at most,
Li(y)
Do (14 e)[Li(y)— Li(x)]+ m(x) 282 4 (14 e)Li(x)+ ()
Inx : =l+e+ X - =l+2e
Li(y) Li(y)

and is at least 1 — 2 for sufficiently large y. Because € is an arbitrary number, this implies

o, 1, or equivalently, m(y) ~ Li(y). The Prime Number Theorem is proved.

Li{y)

Q.E.D.

After the first proof of the Prime Number Theorem by Hadamard and Poussin, more
proofs came out; some of them were shorter, but they all involve difficult complex analysis.
In 1949, Atle Selberg and Paul Erdds found the first elementary proof. Since the proof avoided
the use of complex analysis, it was considered “elementary”. However, it was less natural and

less intuitive than the proof via Riemann’s zeta function while still remaining quite elaborate and
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1. The Riemain Hypothesis:

In his paper on number theory, while studying the zeta function and trying to find a good
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In order to rewrite this equation under integral form, Riemann defined a new function

J(x) that I would like to refer as the Prime-Jumping Function. J(x) is a function that starts at 0

jump of 1/3 at prime cubes p°, and so on. Jix) can be expressed in the form

1 1 1
J = —— + pu—
(JC) 2 12 Plex g E plsx n:]
Then ' Ing(s)=s [ J(x"dx

In&(s)

And

= [T I(ex dx | | (15)

Applying Fourier inversion!® to (15), Riemann concluded

J(x) e 1] “lEs)x’ s with a > 1 (16)
27 e 5
and J(x) _ ___._1___ fed-ios d [lﬁc(s) . (17)17 .
gaidn x 7 o ds




Combining these two, we get:

InE(s)=InE(s) - In H(—%) + -;—hlm In(s~1)

— In&(0) +2P1n(1m%) ~In H(%)+~;~1nn ~In(s—1)

(18)

First term: L aﬁimi{w]xsds . f M.m In£(0) x*ds =n&(0).
2mi lnx ™ “ ™ ds § 270 g

Because E0) =TI(O)x"(0-DE0) =-L(0)=—,In&E(Q)=-In2 .

B |

And this is the numerical value of the first term in the Riemann’s formula for J(x).



. s = s 5 1 ,
Using InXI| —]= —In{l+—|+=In[1+=]{, we can conclude that (19) is equal to
’ (2) E{ ( 2n) 2 ( n)} (P)iseq

f‘” . 19
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Forth term: ——oie [“7 442 fog L L i[}}lﬁ}xsds
2milnx ™= dsi s i lnx® e dsl 2
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= The Expression of 7z¢x) in terms of Jix)

Based on the definition of J(x), Riemann found a relationship between 7(x) and J(x}
1))+ 2+ S+ LW+ = S ),
2 3 4 il
Then, by the Mobius Inversion?', he inverted the order of the equation and got

x(x)mf(x)méf(x/)—c)—%.f(i/;)—... (21)

U < 9 for a sufficiently big value of n,

The first sum is actually finite for each given x since x
which leads to 7(x*/™) = 0. Then it follows that the second series, the representation of m(x) in

terms of J(x}, is finite also.

= The Explicit Formula of t(x):

Substituting (20) to (21), Riemann obtained an explicit formula of the Prime-Counting
function 7(x) as he desired. This formula includes 3 types of terms:

- The stable terms, which do not grow as x increases: They are the last two terms in (20).
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Li(x?} over the imaginary part of the roots of zeta function. Because of the oscillation of
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In addition, the fact that (%) is expressed in terms of a sum over the zeros of the

Riemann zeta function implies that the magnitude of the oscillations of primes around their
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c. The error term of the Prime Number Theorem:
In his paper, Riemann also set up the connection between the relative error in the
asymptotic approximation of m(x) and the distribution of the complex zeres of the Riemann zeta
function. Assuming his hypothesis about the nontrivial zeros of the zeta function is true,

Riemann was able to give an exact analytical formula for the error of the approximation of m(x)

a{x)— ZL %Li(x% = ZL EﬂLi(x%) + “some lesser terms”,

Morenyer itis stated Shoifhe Bismenn Hynatlesis is pouialent t9.3 much befter auqr
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Hypothesis, von Koch was able to use Riemann’s foronula of w(x) and successfully proved this

statement; additionally, he showed that
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strictly inside the strip 0 < Re(s) < 1.2 The Riemann Hypothesis concerns about the non-trivial
zeros and asserts that all non-trivial zeros should lie on the same line called the critical line,

Vs + it, where tis a real number and i is the imaginary anit.

1. Location of trivial zeros
Since the function x(e” — 1)'! is anaiytic near x =0, it can be expanded as a power series
x » B x"
= ' 23
e" -1 Z"“’O n! @3)

where the coefficients B; are called Bernoulli numbers. It is noticed that the odd Bernoulli
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For £(s), applying Buler-Maclaurin summation to the series £(s)= Ein”" , we get?

N-1 N B . B "
§)~ R AN RGN e g5+ ) (s 4 20 2N TR
£) 2””‘1 s—=1 2 2 (2v)! (514 )
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(derived from

where B; is the Bemoulli polynomial that satisfies B, (x+1) — B, (x) = n X
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decrease rapidly in the magnitude.
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complicated.

3. Sample Computations

a. Euler-Maclaurin Summation:
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